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The problem of synthesizing an optimal control by choosing the structure, in non-linear dynamical systems with a random structure, 
is formulated. One of the possible approaches to solving this problem is considered: it uses a method from the theory of the 
optimal control of systems with distributed parameters and enables one to construct the density vector of the distributions of 
the process under consideration for all states in such a way as to guarantee an optimum of the selected probability functional. 
An example is given to illustrate the practical possibilities of the approach. 0 1999 Elsevier Science Ltd. All rights reserved. 

On the basis of well-known classical results [l], the problem of the optimal control of dynamical systems 
with a random structure can be solved only by controlling the system itself (or its actual structure), not 
by selecting the structure of the system. 

We formulate the problem as follows. Consider a non-linear dynamical system with a random structure, 
described in the general case [l] in the Ith state by the following vector equation 

Y = FO(Y, r) + H(D(Y, r)Vt, Y&J = Ye, 1 = 1, . . . . s (1) 

where I is the number of the state (structure) fo(Y, t), H”\Y, t) are non-linear vector- and matrix-valued 
functions of the appropriate dimensions n 6 s N and m r, x r&O, N = max(# = n@)), Y(t) is the N- 
dimensional state vector in any structure and V, is Gaussian white vector-noise of dimension &. 

It is required to find a law u(Y, t) (1 = 1,2, . . . , s) for the transition from one structure to another 
so as to guarantee the optimum value over a given time interval T = [to, tk] of a certain functional Jo, 
defined on the set of probabilities and depending, in general, non-linearly on the distribution density 
p(Y, t) of the state vector Y 

where Y* is the domain of definition of the argument Y in which the optimum is sought and 0 is a given 
non-linear analytic function. 

With this form of the criterion Jo, a fairly wide range of the optimum criteria used in practical work is covered: 
the maximum (minimum) of the probability that a vector Y exists in the domain Y. in the given time interval: 

@(P) = ffx 
the minimum of the deviation of the unknown density p from a given valueg: Q(p) = (p -g)*, Q(p) = 1 p -g I, 

O(p) = -p In (g/p) (the Kulback criterion), etc.; 
the maximum of the information about the state vector Y (or its minimum entropy): m(p) = p In p, a(p) = 

p(a In p/&‘)* (the Fisher criterion); and others. 

For the functional Jo to attain an optimum value, it is proposed to control the density p(Y, t) by choosing 
a suitable process structure Y, this choice, in turn, depends-given the physical and technological 
characteristics of the structures-on the form of the law governing the change of structure. Thus, the 
problem may also be formulated as the synthesis of a stochastic process with given characteristics-in 
this case, an optimal transition law between the structures of the process. The most suitable choice of 
a vector defining the control of such structural transitions in what follows is the intensity vector of state 
transitions [ 1 ] 

V(Y, f) = IO Vt2...Vts V2t 0 V23...Vh V3t V32 0 Vu...Vd(,I) Olr 

where vl,(Y, t) is the intensity of transitions from state 1 to state r; in order, for example, to avoid frequent 

tprikl. Mur. Meti. Vol. 63, No. 2, pp. 231-236, 1999. 

223 



224 S. ESokolov  and I.V. Shcherban' 

state changes, it is assumed that the intensity vector is defined in such a way as to minimize the following 
quadratic form over a given time interval T for Y ~ Y. 

rain s~ v r ( y , t ) v ( Y , t ) d Y d t  

Since the vector v contains zero components, we shall essentially search in what follows not for the 
vector v itself but for a vector v0 such that v = Eovo, where v0 is the vector formed from v by omitting 
the zero components, and E0 is obtained from the identity matrix by adding zero rows so as to obtain 
the suitable zero elements of v. 

Then the criterion J to be minimized finally takes the form 

J = II {'Hp(Y, t)l + v r (V, 0v  0 (Y, t) }aYa, (2) 
TY. 

In turn, the distribution density of the process Y, described by Eqs (I) is 

s s" I 
p(Y,t) = E ~ Y , t , t )  = 5".(o ¢ )(Y,t) 

I=1 I=l 

where to(t)(Y, t) is the distribution density of the extended vector II v II (l is the index of the state). 
The most characteristic in applications is a continuous process Y in which the reconstructed values 

of the / th  state are identical with the final values of the process of the rth state, that is, in which the 
final conditions for the existence of the rth (preceding) structure are the initial conditions for the / th  
(next) structure. For such a process (according to the classification proposed in [1]: "process with 
instantaneous complete reco.nstruction"), the conditional probability density of reconstruction of 
realizations is a 8-function [1, p. 64], so that no points of discontinuity appear when the equations for 
the densities of existence of the process in the corresponding structures are combined. In that case, 
the functions to(/)Ot, t) are described by the following system of generalized Fokker-Planck-Kolmogorov 
(FPK) equations [1] 

~(t)(y,t) 
= L[oj(t)(y,t)] - ~.Vtr(Y,t)o)(t)(y,t)+ ~Vrt (Y , t )o(r ) (y , t ) ,  l = 1 ..... s 

~t r=l r=l 

where L is the FPK operator. Introducing vectors v0(Y, t) and (o (Y, t) = II c00)(Y, t ) . . .  o)(s)(Y, t) II r, 
we obtain the following general equation 

0o(Y,t)  = L[o(Y,t)]-[t 'l[(o(Y,t)](g, ® l s ) - ( o r ( y , t ) ®  E,]Eovo(Y,t)  (3) 
0t 

("~((O) = d i ag ( f j0 ( I )  . . . . .  ¢d0 (s)) 

where E0 is the s × s identity matrix, I, is a row of ones of dimension s and ® is the symbol of the 
Kronecker product. 

Taking into consideration that, with the vector to defined as above, the expression for the density is 
p(Y, t) = Is(o(Y, t), we can express functional (2) as follows: 

J = ~(dP[Iso~(V,t)l+ Vro(Y,t)uo(Y,t)}dYdt = ~W(t)dt (4) 
7Y, T 

and, in order to simplify the subsequent solution, we rewrite Eqs (3) as follows: 

3---~ = L((O) - [~((O)(E s ® I s ) -  (o r ® g s ]E0v 0 = L((o) - F ( ( o ) p  0 ( 5 )  
0t 

Then, finally, the problem may be formulated as that of finding a vector v 0 so as to guarantee the 
synthesis of a vector to satisfying Eq. (5) which minimizes functional (4). We can thus solve the problem 
of choosing the optimum structure by determining the maximum component of the state probability 
vector [1] 

P(t) = ~(o(Y,t)dY (6) 
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We will now use the method of dynamic programming, according to which, when an optimum control 
is sought in the class of piecewise-continuous functions with values in an open domain u., the problem 
reduces to solving the following functional equation 

min~dV + W } = O  (7) 
wv.L  dt 

subject to the final condition V(tk) = 0, where Vis the optimum functional, which depends parametrically 
on time t ~ T and is defined on the set of vector-valued functions to satisfying Eq. (5). 

For linear systems, the functional V is sought as an integral quadratic form [2] 

V = ~ tot  (y,  t)a(Y, t)to(Y,t)dY 
Y, 

where a is an s x s matrix. Hence, taking into account that to satisfies Eq. (5), we obtain an expression 
for the subsequent determination of the optimum v~ 

dV ) + W = ~--t-t to+ tor(a r +a) (L( to ) -  F(to)Vo)+tl~(IstO)+l, rl ,  o d Y  (8) 
dt 

Analysis of this expression shows that the determination of the vector v~} by solving the functional 
equation (7) reduces to a classical problem: it is required to find a vector-valued function which minimizes 
the definite integral (8). The required vector-valued function v~(¥, t) is also required to satisfy the system 
of Euler equations, whence it follows that 

u* O = ~ Fr  (to)(a r + a)to 

Substituting the optimum state transition law v~ thus found into (5), one can write down the equation 
for the optimum vector to in the sense of (4) 

3to = L(to) - 1 Fr(to)(a r + a)to (9) 
/gt 

Integration of this equation completes the solution of the problem of choosing the optimum structure 
by determining the maximum component of the state probability vector (6). 

The equations necessary to determine the matrix-valued function a(Y, t) in (9) follow from the 
condition 

(dr  / dt+ W),o=~ = 0 

after substituting the vector v~ into (8) 

Oa = l (ar +a)L(to)to~ 1 r ! . r +a)F(to)Fr(to)(a r +a) (10) 
3--T s - s- ' f t°°t%O(lsm)+-4 (a 

where too = II 1/tn 0), • • • ,  1/to (s) II r is an auxiliary vector, introduced to facilitate the analysis and to 
simplify the form of Eq. (10). 

Simultaneous solution of system (9), (10) subject to the boundary conditions 

to(Y, to) = O~o, V(Y, tk)=O 

essentially exhausts the theoretical solution of the problem formulated at the outset. 

If the vector v~ is constructed on the assumption that it is independent of Y, the condition that the functional 
equation (8) should be minimized implies an integral dependence of v~ on o) 

v~ =(2A) -l SFr(to)(a r +a)todY, A = ~dY 
Y, Y* 

which, after substitution into (5) and (8), yields a system of integro-partial-differential equations (unlike (9), 
(10), which are only differential equations), the solution of which is considerably more complicated than in the 
first case. 

Despite the fact that the theoretical solution of the problem obtained implies the possibility, in 
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principle, of an optimum choice of structure for the process Y, the practical solution of the boundary- 
value problem by direct consideration of the adjoint system of partial differential equations (9) and 
(10) is extremely difficult. Without dwelling on the numerous possible approximate methods for solving 
that problem, based on a compromise between the necessary precision and the volume of computa- 
tional resources, we will now consider a method using expansion of the functions a and to in series with 
respect to a certain system of orthonormal functions ~o = II q~l . . . .  , (PN IIr of a vector argument 

a(Y, t) = B(t)q~(Y), o~(Y, t) = A(t)g~(Y) 

where A(t) and B(t) are ordinary and parti t ioned matrices of the expansion coefficients, which are 
determined as the solution proceeds. Then the problem reduces to a two-point boundary-value problem: 
integration of the matrix integro-differential equation 

= I ~ L(A~)~ r - 1 F((A~).F r (A~o)(~orB r + B~o)(A~o)~or)}dy 
at vt 2 

The solution of this problem turns out to be much simpler and may be achieved by various traditional 
techniques: shooting, invariant imbedding, etc. A special feature in the practical solution of the problem 
in this case is that no rigid conditions are imposed on its precision, since the choice of structure depends 
only on the index of the maximum component  of the vector 

P(t) = A(t)j ~o(Y)dY 
Y 

and not on its value. 

To illustrate the possibility of using the above approach, we consider the following example. A non-linear stochastic 
process with random structure is described by the equation 

}" =f(/)(y, t) + v t, ! = 1, 2 

fll)(y, t) ffi _y2, f(2)(y, 0 = -y + 0.01y 3 

where vt is normalized Gaussian white noise. 
It is required to choose the structure of the process y so as to maximize the probability of its existence within 

given limits y. = [Ymin = - 0 . 8 ;  Ymax = 0.9] over the time interval T = [0, 300] s; that is, the minimizing criterion 
has the form 

J = ~ J{-p(y,t) + 1,~(y,t)Po(Y,t)}dydt, p(y,t) = o~(l)(y,t)+o~(2)(y,t) 
Ty, 

where 

=...,-,.,..,,.o..-I°<"1 R 
-g<: ' l  ,,o :lv~, ! 

l ~ . 2  (,). i a %  °) I 

:1 I '°<'> -'><'>1 L(<o) I L t 0 ' - 0 0 I y ' ~ : ' i + A ~  I, F(<,>):I_<,>. , ":>1 
I ~  ' 2 a y  II 

Equations (9) and (10) for the optimal vector and adjoint matrix function in this case are 

a,o 1 l l lo  - f l °  t a  T +a)lo 
-'~-t = L ( ° ' ) - 2 i -  rio rio 

a--[ = (a r + a ) L ( o )  w(i) 
, ,  

' : > 1 + 7 l  i i i (  o,<'> ~ 
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This problem may be solved by approximating the functions co and a by Fourier series in the interval [-5, 5], 
accurate to four terms of the expansions, and integrating the system of equations obtained for the expansion 
coefficients, using the invariant imbedding method [3] in the time interval [0, 300] s. On completing the integration, 
having computed approximate values of the functions coO) and co(2), it was found that the indices of the structures, 
chosen subject to the requirement that the probability of  the state at the time in question should be a maximum, 
were distributed in time as follows: in the intervals [0, 87] s and [115, 300] s---the second structure; in the intervals 
[0, 87] s and [115, 300] s - - the  second structure; in the intervals [0, 87] s and [115, 300] s - - the  second structure; 
in the interval [87, 115] s---the first structure. At the same time, the system of equations of the densities coO) and 
co(2) for the traditional case of an uncontrollable change of state with unit intensity [1] was integrated, and it was 
established that in the latter case the value of the minimized criterion J was greater by a factor of 1.47 than in 
optimal control by the choice of  structure. 
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